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In this correspondence,for a positive even integer n, a new family of binary sequences with 2n + 1
sequences of length 2n − 1 taking six and eight valued correlations is presented. This family can be
considered as a new class of Gold-like sequences.

PACS numbers:

I. INTRODUCTION

Since the late sixties, many families of binary sequences
of length 2n − 1 with optimal correlations [2],[3],[4],[6]
have been found, where n is a positive integer. The Gold
sequence family [2] is the best known binary sequence
family having four-valued correlations. For an odd n,
Boztas and Kumar [1] introduced a family of binary se-
quences , the so-called Gold-like sequences, whose corre-
lation distribution is identical to that of Gold sequences.
For even n, Udaya [7] introduced families of binary se-
quences with six-valued correlations. Later, Kim and No
further generalized the Gold-like sequences to GKW-like
sequences by the quadratic form technique [4]. In this
paper, we use the quadratic form technique to get a new
family of optimal binary sequences with 2n+1 sequences
of length 2n − 1.

II. PRELIMINARIES

Let F2n be the finite field with 2n elements. The trace
function from F2n to F2e is defined by

trne (x) =

n
e−1∑
i=0

x2
ei

where x ∈ F2n and e|n and {v0, v1, ......, v2n−1} is an
enumeration of the elements in F2n . We also recall that
the symplectic bilinear form of a trace form f(x) is

B(x, z) = f(x) + f(z) + f(x+ z) for x, z ∈ F2n .

Let f(x) be a function from F2n to F2. The trace
transform F (λ) of f(x) is defined by

F (λ) =
∑
x∈F2n

(−1)f(x)+tr
n
1 (xλ).

Lemma 1. ( Helleseth and Kumar [3]) Let f(x) be a
quadratic Boolean function on F2n . If the rank of f(x)
is 2h, 2 ≤ 2h ≤ n, then the distribution of the trace
transform values is given by

∗Email: sankhadip.roy@uem.edu.in

F (λ) =


2n−h, 22h−1 + 2h−1times

0, 2n − 22htimes

−2n−h, 22h−1 − 2h−1times

where rank is the co-dimension of the radical of f(x).

All the sequence families considered in this paper are
constructed by using the trace function a(x) = trn1 (x)
and some quadratic form b(x) as follows:

C = {fi(x)|0 ≤ i ≤ 2n, x ∈ F ∗2n}

where

fi(x) =

{
a(vix) + b(x), 0 ≤ i ≤ 2n−1

a(x), i = 2n.

The correlation function between two sequences defined
by fi(x) and fj(x) can be given by the function from F2n

to the set of integers Z as

Ri,j(δ) =
∑
x∈F∗

2n
(−1)fi(x)+fj(δx)

where δ ∈ F ∗2n and it can be expressed as a trace trans-
form

Ri,j(δ) =
∑
x∈F∗

2n

(−1)tr
n
1 ([vi+vj ]x)+g(x)

= −1 +
∑
x∈F2n

(−1)tr
n
1 (xλ)+g(x)

= −1 +G(λ)

where g(x) = b(δx) + b(x) and λ = vi + vj ∈ F2n .

Definition 1. Let n
e = m be even. We define the

Boolean functions p(x) and q(x) by

p(x) =
∑n

2−1
l=1 trn1 (x2

l+1), q(x) =
∑m

2 −1
l=1 trn1 (x2

el+1).

Definition 2. ( Udaya [7]) For an even integer
n = 2k ≥ 4 , Udaya introduced the following family G

gi(x) =

{
trn1 (vix) + p(x) + tr

n
2
1 (x2

n
2 +1), 0 ≤ i ≤ 2n − 1

trn1 (x), i = 2n.
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Theorem 1. (Udaya [7]) For the family G , the distri-
bution of correlation values Ri,j(δ) are given as follows:



2n − 1, 2n + 1 times

−1, 22n−1(2n−1 + 2n−2) + 22n − 2 times

−1 + 2k, (22n−1 − 2)(2n−1 + 2k−1) times

−1− 2k, (22n−1 − 2)(2n−1 − 2k−1) times

−1 + 2k+1, 22n−1(2n−3 + 2k−2) times

−1− 2k+1, 22n−1(2n−3 − 2k−2) times.

Definition 3. ( Kim and No [4]) Let n
e = m be an

even integer, where m ≥ 4. Kim and No introduced the
following sequences S with six-valued correlations.

si(x) =

{
trn1 (vix) + q(x) + tr

n
2
1 (x2

n
2 +1), 0 ≤ i ≤ 2n − 1

trn1 (x), i = 2n.

Theorem 2. (Kim and No [4]) For the family S , the
distribution of correlation values Ri,j(δ)are given as fol-
lows:



2n − 1, 2n + 1 times

−1, 22n−e(2n − 2n−2e) + (22n − 2) times

−1 + 2
n+2e

2 , 22n−e(2n−2e−1 + 2
n−2e−2

2 ) times

−1− 2
n+2e

2 , 22n−e(2n−2e−1 − 2
n−2e−2

2 )

−1 + 2
n
2 , (22n − 22n−e − 2)(2n−1 + 2

n
2
−1)times

−1− 2
n
2 , (22n − 22n−e − 2)(2n−1 − 2

n
2
−1)times.

In this paper we introduce a new family U which is a
combination of G and S.

Definition 4. Let n
e = m ≥ 4 be even. We define the

family U of binary sequences by

ui(x) =

{
trn1 (vix) + p(x) + q(x), 0 ≤ i ≤ 2n − 1

trn1 (x), i = 2n.

For the correlation property of the family U , we have
the following main result.

Theorem 3. The distribution of correlation values of the
family U is given as when e is odd

Correlation (Ri,j(δ)) Number of times it appears

2n − 1 2n + 1

−1 23n + 22n − 2n+1 + 2e

+2n+2e−1(2e−1 − 2n−1 − 1)− 2

−1 + 2n−
e−1
2 (2e−2 + 2

e−3
2 )(2n+e − 2)

−1− 2n−
e−1
2 (2e−2 − 2

e−3
2 )(2n+e − 2)

−1 + 2n−e+1 (22e−3 + 2e−2)(22n − 2n+e)

−1− 2n−e+1 (22e−3 − 2e−2)(22n − 2n+e)

and when e is even

Correlation (Ri,j(δ)) Number of times it appears

2n − 1 2n + 1

−1 23n + 22n − 2n+1 + 2e+1

+2n+e−2(3 · 2e−1 − 2n+2 − 3)− 2

−1 + 2n−
e
2 (2e−1 + 2

e−2
2 )(2n+e−1 + 2n − 2)

−1− 2n−
e
2 (2e−1 − 2

e−2
2 )(2n+e−1 + 2n − 2)

−1 + 2n−
e−2
2 (2e−3 + 2

e−4
2 )(2n+e−1 − 2n)

−1− 2n−
e−2
2 (2e−3 − 2

e−4
2 )(2n+e−1 − 2n)

−1 + 2n−e (22e−1 + 2e−1)(22n − 2n+e)

−1− 2n−e (22e−1 − 2e−1)(22n − 2n+e)

III. CORRELATION OF p(x) + q(x)

The following theorem describes the correlation of
p(x) + q(x).

Theorem 4. The distribution of the trace transform val-
ues (cross-correlation values) of p(x) + q(x) is given as


2n−

e−1
2 , 2e−2 + 2

e−3
2 times

0, 2n − 2e−1times

−2n−
e−1
2 , 2e−2 − 2

e−3
2 times

when eis odd


2n−

e
2 , 2e−1 + 2

e−2
2 times

0, 2n − 2etimes

−2n−
e
2 , 2e−1 − 2

e−2
2 times

when e is even.

Proof. For the proof we will be using some results from

[6] and [7]. We have for p′(x) =
∑n

2−1
l=1 trn1 (x2

l+1) +

tr
n
2
1 (x2

n
2 +1), Bp′(x, z) = trn1 (z(trn1 (x) + x)) and for

q′(x) =
∑m

2 −1
l=1 trn1 (x2

el+1) + tr
n
2
1 (x2

n
2 +1), Bq′(x, z)

= trn1 (z(trne (x) + x)). Then Bp+q(x, z) = Bp′+q′(x, z)
= trn1 (z[trne (x) + trn1 (x)]). So we need to find the number
of x ∈ F2n such that trne (x) + trn1 (x) = 0 which implies
trne (x) = 0 or 1 when e is odd.

Now trne : F2n
onto→ F2e . So |Ker(trne )| = 2n

2e = 2n−e.
Therefore |{x ∈ F2n : trne (x) = 0 or 1}| = 2|Ker(trne )| =
2n−e+1. Hence the rank of p+ q is n− (n− e+ 1) = e− 1
and we get the first case using the Lemma 1.
When e is even, if trne (x) = 1, trn1 (x) = tre1(trne (x)) =
tre1(1) = 0. So trne (x) + trn1 (x) 6= 0. So when e is even
trne (x) = 0 and in that case rank of p + q is equal to e
and we get the second case.

IV. PROOF OF THEOREM 8

The proof can be divided into the following five cases.
Case 1: δ = 1, i = j :
It is a trivial case and thus
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Ri,j(δ) =
∑
x∈F∗

2n
(−1)fi(x)+fi(x) = 2n − 1, 2n + 1 times.

Case 2: δ 6= 1, i = j = 2n :

Ri,j(δ) =
∑
x∈F∗

2n
(−1)tr

n
1 (x)+trn1 (δx) =∑

x∈F∗
2n

(−1)tr
n
1 (1+δx) = −1, 2n − 2 times (number of

choices for δ 6= 0, 1).

Case 3: δ = 1, i 6= j, 0 ≤ i, j ≤ 2n − 1 :

Ri,j(δ) =
∑
x∈F∗

2n

(−)ui(x)+uj(x)

=
∑
x∈F∗

2n

(−)tr
n
1 ((vi+vj)x)

= −1, 2n(2n − 1) times

Case 4: i = 2n, j 6= 2n (or j = 2n, i 6= 2n):
For fixed δ

R2n,j(δ) =
∑
x∈F∗

2n

(−)tr
n
1 ([δ+vj ]x)+p(x)+q(x)

= −1 +
∑
x∈F2n

(−)tr
n
1 (λx)+p(x)+q(x)

for λ = δ + vj .

The distribution of the trace transform of p(x) + q(x) is
already given in Theorem 9. Therefore, the distribution
of correlation function for a fixed δ is given as


−1 + 2n−

e−1
2 , 2e−2 + 2

e−3
2 times

−1, 2n − 2e−1times

−1− 2n−
e−1
2 , 2e−2 − 2

e−3
2 times

when e is odd


−1 + 2n−

e
2 , 2e−1 + 2

e−2
2 times

−1, 2n − 2etimes

−1− 2n−
e
2 , 2e−1 − 2

e−2
2 times

when e is even.

As δ varies over F ∗
2n , the distribution is for e odd


−1 + 2n−

e−1
2 , (2e−2 + 2

e−3
2 )(2n − 1) times

−1, (2n − 2e−1)(2n − 1) times

−1− 2n−
e−1
2 , (2e−2 − 2

e−3
2 )(2n − 1) times

and for e even


−1 + 2n−

e
2 , (2e−1 + 2

e−2
2 )(2n − 1) times

−1, (2n − 2e)(2n − 1) times

−1− 2n−
e
2 , (2e−1 − 2

e−2
2 )(2n − 1) times

Case 5: δ ∈ F2n \ {0, 1} and 0 ≤ i, j ≤ 2n − 1 :
In this case, we have

ui(x)+uj(δx) = p(x)+q(x)+p(δx)+q(δx)+ trn1 ([vi+δvj ]x).

Actually, the correlation function is equivalent to the trace
transform of a function r(x) which is given as

r(x) = p(x) + q(x) + p(δx) + q(δx).

In order to compute the distribution of the correlation values,
the rank of the symplectic form associated with r(x) must
be found and it is enough to count the number of x in F2n

satisfying

Br(x, z) = 0, for all z ∈ F2n

where

Br(x, z) = r(x) + r(z) + r(x+ z).

Plugging p(x) and q(x) into Br(x, z), we have

Br(x, z) = trn1 (z[trn1 (x) + trne (x)] + δz[trn1 (δx) + trne (δx)])

= trn1 (z[δtrn1 (δx) + δtrne (δx) + trn1 (x) + trne (x)]).

So the rank can be computed by determining the number of
solutions to

δtrn1 (δx) + δtrne (δx) + trn1 (x) + trne (x) = 0. (1)

Let trne (x) = a and trne (δx) = b, where a, b ∈ F2e . Then (1)
can be written as

δtre1(b) + tre1(a) + δb+ a = 0. (2)

SubCase 1: δ ∈ F2e . Then from equation (1) , we get

δ2a+ δtrn1 (δx) + trn1 (x) + a = 0 (3)

as trne (δx) = δtrne (x) = δa because δ ∈ F2e .
Now we have the following four cases depending on the values
of trn1 (δx) and trn1 (x)

1. trn1 (δx) = 1 and trn1 (x) = 1 ,which implies δ2a + δ +
1 + a = 0.

2. trn1 (δx) = 1 and trn1 (x) = 0 , which gives δ2a+δ+a = 0.

3. trn1 (δx) = 0 and trn1 (x) = 1 , which implies δ2a+1+a =
0.

4. trn1 (δx) = 0 and trn1 (x) = 0 , which gives δ2a+ a = 0.

The fourth equation is true only if a = 0, otherwise (δ2+1)a =
0 ⇒ δ = 1 but δ 6= 0 or 1. Also if a = trne (x) = 0, we
get trn1 (x) = tre1(a) = tre1(0) = 0 and trn1 (δx) = tre1(δa) =
tre1(0) = 0. So all the x ∈ F2n for which trne (x) = 0 are so-
lutions to the equation (3) and that actually gives us 2n−e

solutions so far. Before we start discussing the other two
equations we need the following simple but interesting obser-
vation.

tre1(
δ

1 + δ2
) = tre1(

δ + 1

δ2 + 1
+

1

δ2 + 1
)

= tre1(
δ + 1

δ2 + 1
) + tre1(

1

δ2 + 1
)

= tre1(
δ + 1

(δ + 1)2
) + tre1((

1

δ + 1
)2)

= tre1(
1

δ + 1
) + tre1(

1

δ + 1
)

= 0.
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First, we consider e is odd. Then tre1(1) = 1.
(1) gives a = 1

1+δ
which implies

trn1 (δx) = tre1(aδ)

= tre1(
δ

1 + δ
)

= tre1(1 +
1

δ + 1
)

= tre1(1) + tre1(
1

δ + 1
)

= 1 + tre1(
1

δ + 1
)

and trn1 (x) = tre1(a) = tre1( 1
δ+1

).

(2) gives a = δ
1+δ2

which implies

trn1 (δx) = tre1(
δ2

1 + δ2
)

= tre1(
δ

1 + δ
)

= 1 + tre1(
1

δ + 1
)

and trn1 (x) = tre1( δ
1+δ2

) = 0.

(3) gives a = 1
1+δ2

which implies

trn1 (δx) = tre1(
δ

1 + δ2
) = 0, trn1 (x) = tre1(

1

1 + δ
).

Now if tre1( 1
1+δ

) = 0, then (2) works. If tre1( 1
1+δ

) = 1, then (3)

works. So in any case we have all together 2 · 2n−e = 2n−e+1

solutions.

Now we consider the case when e is even. Then tre1(1) = 0
and tre1( δ

1+δ
) = tre1( 1

1+δ
).

(1) gives a = 1
1+δ

which implies

trn1 (δx) = tre1(
δ

1 + δ
)

= tre1(
1

δ + 1
)

= trn1 (x).

(2) gives a = δ
1+δ2

which implies

trn1 (δx) = tre1(
δ2

1 + δ2
)

= tre1(
δ

1 + δ
)

= tre1(
1

δ + 1
)

and trn1 (x) = tre1( δ
1+δ2

) = 0.

(3) gives a = 1
1+δ2

which implies just like before

trn1 (δx) = 0 and trn1 (x) = tre1(
1

1 + δ
).

Now if tre1( 1
1+δ

) = 0, then (1),(2) and (3) do not work, only

(4) works and that gives us 2n−e solutions. If tre1( 1
1+δ

) = 1,

then each of (1),(2),(3) and (4) works and in that case we
have 4 · 2n−e = 2n−e+2 many solutions. So actually, in half
of the cases we have 2n−e many solutions and the other half
gives us 2n−e+2 many solutions.
As δ varies over F2e \ {0, 1} and 0 ≤ i, j ≤ 2n − 1, the distri-
bution of correlation function is


−1 + 2n−

e−1
2 , (2e−2 + 2

e−3
2 )2n(2e − 2) times

−1, (2n − 2e−1)2n(2e − 2) times

−1− 2n−
e−1
2 , (2e−2 − 2

e−3
2 )2n(2e − 2) times

when e is odd

and when e is even



−1 + 2n−
e
2 , (2e−1 + 2

e−2
2 )2n(2e−1 − 1) times

−1 + 2n−
e−2
2 , (2e−3 + 2

e−4
2 )2n(2e−1 − 1) times

−1, (2n − 2e)2n(2e−1 − 1)

, +(2n − 2e−2)2n(2e−1 − 1) times

−1− 2n−
e
2 , (2e−1 − 2

e−2
2 )2n(2e−1 − 1) times

−1− 2n−
e−2
2 , (2e−3 − 2

e−4
2 )2n(2e−1 − 1) times

SubCase 2: δ /∈ F2e . This case is little complicated. Say n =
se and pick δ ∈ F2n . Consider the map φ : F2n −→ F2e ×F2e

by φ(x) = (trne (x), trne (δx)).
We claim: If δ /∈ F2e , then φ is onto.

proof: Set q = 2e. Write δ = εq. Set δ
′

= εq + ε. δ /∈ Fq ⇒
δ
′
6= 0, since δ

′
= 0 ⇒ εq = ε ⇒ ε ∈ Fq ⇒ δ ∈ Fq. Pick any

z ∈ Fq. trne is onto , so ∃γ ∈ Fqs with trne (γ) = z.

Set β = (δ
′
)−1γ ( possible as δ

′
6= 0 ). Let x = βq + β. Then

trne (x) = 0 and

trne (δx) = trne (εqβq + εqβ)

= trne (εqβq + εβ + δ
′
β)

= trne (δ
′
β)

= trne (γ) = z.

So (0, z) ∈ Im(φ) and since z is arbitrary 0 × Fq ⊂ Im(φ).
Similarly, Fq × 0 ⊂ Im(φ). As φ is additive, φ is onto.
Hence the number of solutions to (trne (x), trne (δx)) = (ε1, ε2),
where εi ∈ F2e is 2n−2e. Now when δ /∈ F2e from equation(2)
we get b = tre1(b) and a = tre1(a).
Suppose, e is odd. Then (b, a) = (1, 0), (0, 1), (1, 1) and (0, 0)
give us solutions to equation( 2). So we have all together
4 · 2n−2e = 2n−2e+2 solutions. If e is even, none of (b, a) =
(1, 0), (0, 1), (1, 1) is a solution to equation(2). Consider b =
1, a = 0. Then tre1(b) = 0 6= b. Similarly, we can show that
the other two do not work either. So only (b, a) = (0, 0) gives
us solution to equation (2) and we have 2n−2e solutions. As δ
varies over F2n \ F2e , the distribution of correlation function
is


−1 + 2n−e+1, (22e−3 + 2e−2)2n(2n − 2e) times

−1, (2n − 22e−2)2n(2n − 2e) times

−1− 2n−e+1, (22e−3 − 2e−2)2n(2n − 2e) times

when e is odd


−1 + 2n−e, (22e−1 + 2e−1)2n(2n − 2e) times

−1, (2n − 22e)2n(2n − 2e) times

−1− 2n−e, (22e−1 − 2e−1)2n(2n − 2e) times

when e is even.

Combining the results of the above five cases, the distribu-
tion of the correlation values for the sequence family U can
be obtained.
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