Another New Family of Binary Sequences with Six or eight-valued Correlations

Sankhadip Roy*

Department of Basic Science and Humanities, University of Engineering and Management, Kolkata-160, India

In this correspondence, for a positive even integer n, a new family of binary sequences with $2^n + 1$ sequences of length $2^n - 1$ taking six and eight valued correlations is presented. This family can be considered as a new class of Gold-like sequences.

PACS numbers:

I. INTRODUCTION

Since the late sixties, many families of binary sequences of length $2^n - 1$ with optimal correlations [2],[3],[4],[6] have been found, where *n* is a positive integer. The Gold sequence family [2] is the best known binary sequence family having four-valued correlations. For an odd *n*, Boztas and Kumar [1] introduced a family of binary sequences , the so-called Gold-like sequences, whose correlation distribution is identical to that of Gold sequences. For even *n*, Udaya [7] introduced families of binary sequences with six-valued correlations. Later, Kim and No further generalized the Gold-like sequences to GKW-like sequences by the quadratic form technique [4]. In this paper, we use the quadratic form technique to get a new family of optimal binary sequences with $2^n + 1$ sequences of length $2^n - 1$.

II. PRELIMINARIES

Let F_{2^n} be the finite field with 2^n elements. The trace function from F_{2^n} to F_{2^e} is defined by

$$tr_e^n(x) = \sum_{i=0}^{\frac{n}{e}-1} x^{2^e}$$

where $x \in F_{2^n}$ and e|n and $\{v_0, v_1, \dots, v_{2^n-1}\}$ is an enumeration of the elements in F_{2^n} . We also recall that the symplectic bilinear form of a trace form f(x) is

$$B(x, z) = f(x) + f(z) + f(x + z)$$
 for $x, z \in F_{2^n}$.

Let f(x) be a function from F_{2^n} to F_2 . The trace transform $F(\lambda)$ of f(x) is defined by

$$F(\lambda) = \sum_{x \in F_{2^n}} (-1)^{f(x) + tr_1^n(x\lambda)}.$$

Lemma 1. (Helleseth and Kumar [3]) Let f(x) be a quadratic Boolean function on F_{2^n} . If the rank of f(x) is $2h, 2 \leq 2h \leq n$, then the distribution of the trace transform values is given by

$$F(\lambda) = \begin{cases} 2^{n-h}, & 2^{2h-1} + 2^{h-1} times \\ 0, & 2^n - 2^{2h} times \\ -2^{n-h}, & 2^{2h-1} - 2^{h-1} times \end{cases}$$

where rank is the co-dimension of the radical of f(x).

All the sequence families considered in this paper are constructed by using the trace function $a(x) = tr_1^n(x)$ and some quadratic form b(x) as follows:

$$C = \{f_i(x) | 0 \le i \le 2^n, x \in F_{2^n}^*\}$$

where

$$f_i(x) = \begin{cases} a(v_i x) + b(x), & 0 \le i \le 2^{n-1} \\ a(x), & i = 2^n. \end{cases}$$

The correlation function between two sequences defined by $f_i(x)$ and $f_j(x)$ can be given by the function from F_{2^n} to the set of integers \mathbb{Z} as

$$R_{i,j}(\delta) = \sum_{x \in F_{on}^*} (-1)^{f_i(x) + f_j(\delta x)}$$

where $\delta \in F_{2^n}^*$ and it can be expressed as a trace transform

$$\begin{aligned} R_{i,j}(\delta) &= \sum_{x \in F_{2^n}^*} (-1)^{tr_1^n([v_i + v_j]x) + g(x)} \\ &= -1 + \sum_{x \in F_{2^n}} (-1)^{tr_1^n(x\lambda) + g(x)} \\ &= -1 + G(\lambda) \end{aligned}$$

where $g(x) = b(\delta x) + b(x)$ and $\lambda = v_i + v_j \in F_{2^n}$.

Definition 1. Let $\frac{n}{e} = m$ be even. We define the Boolean functions p(x) and q(x) by $p(x) = \sum_{l=1}^{\frac{n}{2}-1} tr_1^n(x^{2^l+1}), q(x) = \sum_{l=1}^{\frac{m}{2}-1} tr_1^n(x^{2^{el}+1}).$

Definition 2. (Udaya [7]) For an even integer $n = 2k \ge 4$, Udaya introduced the following family G

$$g_i(x) = \begin{cases} tr_1^n(v_i x) + p(x) + tr_1^{\frac{n}{2}}(x^{2^{\frac{n}{2}}+1}), & 0 \le i \le 2^n - 1\\ tr_1^n(x), & i = 2^n. \end{cases}$$

American Journal of Applied Mathematics and Computing US ISSN: 2689-9957 website:https://ajamc.smartsociety.org/

©2019 Society for Makers, Artist ,Researchers and Technologists

^{*}Email: sankhadip.roy@uem.edu.in

Theorem 1. (Udaya [7]) For the family G, the distribution of correlation values $R_{i,j}(\delta)$ are given as follows:

$\int 2^n - 1,$	$2^n + 1$ times
-1,	$2^{2n-1}(2^{n-1}+2^{n-2})+2^{2n}-2$ times
$-1+2^{k}$,	$(2^{2n-1}-2)(2^{n-1}+2^{k-1})$ times
$\int -1 - 2^k$,	$(2^{2n-1}-2)(2^{n-1}-2^{k-1})$ times
$\begin{cases} -1 - 2^k, \\ -1 + 2^{k+1}, \end{cases}$	$2^{2n-1}(2^{n-3}+2^{k-2})$ times
$\left(-1-2^{k+1}\right)$	$2^{2n-1}(2^{n-3}-2^{k-2})$ times.

Definition 3. (Kim and No [4]) Let $\frac{n}{e} = m$ be an even integer, where $m \ge 4$. Kim and No introduced the following sequences S with six-valued correlations.

$$s_i(x) = \begin{cases} tr_1^n(v_i x) + q(x) + tr_1^{\frac{n}{2}}(x^{2^{\frac{n}{2}}+1}), & 0 \le i \le 2^n - 1\\ tr_1^n(x), & i = 2^n. \end{cases}$$

Theorem 2. (Kim and No [4]) For the family S, the distribution of correlation values $R_{i,j}(\delta)$ are given as follows:

$$\begin{cases} 2^{n}-1, & 2^{n}+1 \ times \\ -1, & 2^{2n-e}(2^{n}-2^{n-2e})+(2^{2n}-2) \ times \\ -1+2^{\frac{n+2e}{2}}, & 2^{2n-e}(2^{n-2e-1}+2^{\frac{n-2e-2}{2}}) \ times \\ -1-2^{\frac{n+2e}{2}}, & 2^{2n-e}(2^{n-2e-1}-2^{\frac{n-2e-2}{2}}) \\ -1+2^{\frac{n}{2}}, & (2^{2n}-2^{2n-e}-2)(2^{n-1}+2^{\frac{n}{2}-1}) \ times \\ -1-2^{\frac{n}{2}}, & (2^{2n}-2^{2n-e}-2)(2^{n-1}-2^{\frac{n}{2}-1}) \ times. \end{cases}$$

In this paper we introduce a new family U which is a combination of G and S.

Definition 4. Let $\frac{n}{e} = m \ge 4$ be even. We define the family U of binary sequences by

$$u_i(x) = \begin{cases} tr_1^n(v_ix) + p(x) + q(x), & 0 \le i \le 2^n - 1\\ tr_1^n(x), & i = 2^n. \end{cases}$$

For the correlation property of the family U, we have the following main result.

Theorem 3. The distribution of correlation values of the family U is given as when e is odd

Correlation $(R_{i,j}(\delta))$	Number of times it appears
$2^n - 1$	$2^{n} + 1$
-1	$2^{3n} + 2^{2n} - 2^{n+1} + 2^e$
	$+2^{n+2e-1}(2^{e-1}-2^{n-1}-1)-2$
$-1+2^{n-\frac{e-1}{2}}$	$(2^{e-2} + 2^{\frac{e-3}{2}})(2^{n+e} - 2)$
$-1 - 2^{n - \frac{e-1}{2}}$	$(2^{e-2} - 2^{\frac{e-3}{2}})(2^{n+e} - 2)$
$-1+2^{n-e+1}$	$(2^{2e-3} + 2^{e-2})(2^{2n} - 2^{n+e})$
$-1 - 2^{n-e+1}$	$(2^{2e-3} - 2^{e-2})(2^{2n} - 2^{n+e})$

and when e is even

Correlation $(R_{i,j}(\delta))$	Number of times it appears
$2^n - 1$	$2^{n} + 1$
-1	$2^{3n} + 2^{2n} - 2^{n+1} + 2^{e+1}$
	$+2^{n+e-2}(3\cdot 2^{e-1}-2^{n+2}-3)-2$
$-1+2^{n-\frac{e}{2}}$	$(2^{e-1} + 2^{\frac{e-2}{2}})(2^{n+e-1} + 2^n - 2)$
$-1 - 2^{n - \frac{e}{2}}$	$(2^{e-1} - 2^{\frac{e-2}{2}})(2^{n+e-1} + 2^n - 2)$
$-1+2^{n-\frac{e-2}{2}}$	$(2^{e-3} + 2^{\frac{e-4}{2}})(2^{n+e-1} - 2^n)$
$-1 - 2^{n - \frac{e-2}{2}}$	$(2^{e-3} - 2^{\frac{e-4}{2}})(2^{n+e-1} - 2^n)$
$-1+2^{n-e}$	$(2^{2e-1} + 2^{e-1})(2^{2n} - 2^{n+e})$
$-1 - 2^{n-e}$	$(2^{2e-1} - 2^{e-1})(2^{2n} - 2^{n+e})$

III. CORRELATION OF p(x) + q(x)

The following theorem describes the correlation of p(x) + q(x).

Theorem 4. The distribution of the trace transform values (cross-correlation values) of p(x) + q(x) is given as

$$\begin{cases} 2^{n-\frac{e-1}{2}}, & 2^{e-2}+2^{\frac{e-3}{2}} times \\ 0, & 2^n-2^{e-1} times \\ -2^{n-\frac{e-1}{2}}, & 2^{e-2}-2^{\frac{e-3}{2}} times \end{cases} \qquad when \ eis \ odd \\ \begin{cases} 2^{n-\frac{e}{2}}, & 2^{e-1}+2^{\frac{e-2}{2}} times \\ 0, & 2^n-2^e times \\ -2^{n-\frac{e}{2}}, & 2^{e-1}-2^{\frac{e-2}{2}} times \end{cases} \qquad when \ e \ is \ even. \end{cases}$$

Proof. For the proof we will be using some results from [6] and [7]. We have for $p'(x) = \sum_{l=1}^{\frac{n}{2}-1} tr_1^n(x^{2^l+1}) + tr_1^{\frac{n}{2}}(x^{2^{\frac{n}{2}}+1}), \ B_{p'}(x,z) = tr_1^n(z(tr_1^n(x) + x))$ and for $q'(x) = \sum_{l=1}^{\frac{m}{2}-1} tr_1^n(x^{2^{el}+1}) + tr_1^{\frac{n}{2}}(x^{2^{\frac{n}{2}}+1}), \ B_{q'}(x,z) = tr_1^n(z(tr_e^n(x) + x))$. Then $B_{p+q}(x,z) = B_{p'+q'}(x,z) = tr_1^n(z[tr_e^n(x) + tr_1^n(x)])$. So we need to find the number of $x \in F_{2^n}$ such that $tr_e^n(x) + tr_1^n(x) = 0$ which implies $tr_e^n(x) = 0$ or 1 when e is odd. Now $tr_e^n : F_{2^n} \stackrel{onto}{\to} F_{2^e}$. So $|Ker(tr_e^n)| = \frac{2^n}{2^e} = 2^{n-e}$. Therefore $|\{x \in F_{2^n} : tr_e^n(x) = 0 \text{ or } 1\}| = 2|Ker(tr_e^n)| = 2^{n-e+1}$. Hence the rank of p+q is n-(n-e+1)=e-1 and we get the first case using the Lemma 1. When e is even, if $tr_e^n(x) = 1, tr_1^n(x) = tr_1^e(tr_e^n(x)) = tr_1^e(1) = 0$. So $tr_e^n(x) + tr_1^n(x) \neq 0$. So when e is even $tr_e^n(x) = 0$ and in that case rank of p+q is equal to e

IV. PROOF OF THEOREM 8

and we get the second case.

The proof can be divided into the following five cases. **Case 1:** $\delta = 1, i = j$: It is a trivial case and thus

American Journal of Applied Mathematics and Computing

 \square

$$R_{i,j}(\delta) = \sum_{x \in F_{2n}^*} (-1)^{f_i(x) + f_i(x)} = 2^n - 1, \ 2^n + 1 \text{ times.}$$

Case 2: $\delta \neq 1, i = j = 2^n$:

$$R_{i,j}(\delta) = \sum_{x \in F_{2n}^*} (-1)^{tr_1^n(x) + tr_1^n(\delta x)} = \sum_{x \in F_{2n}^*} (-1)^{tr_1^n(1+\delta x)} = -1, \ 2^n - 2 \text{ times (number of abscience for } \delta \neq 0, 1)$$

choices for $\delta \neq 0, 1$).

Case 3:
$$\delta = 1, i \neq j, 0 \le i, j \le 2^n - 1$$
:

$$R_{i,j}(\delta) = \sum_{x \in F_{2n}^*} (-)^{u_i(x) + u_j(x)}$$

=
$$\sum_{x \in F_{2n}^*} (-)^{tr_1^n((v_i + v_j)x)}$$

= -1,
$$2^n (2^n - 1) \text{ times}$$

Case 4: $i = 2^n, j \neq 2^n$ (or $j = 2^n, i \neq 2^n$): For fixed δ

$$R_{2^{n},j}(\delta) = \sum_{x \in F_{2^{n}}^{*}} (-)^{tr_{1}^{n}([\delta+v_{j}]x)+p(x)+q(x)}$$
$$= -1 + \sum_{x \in F_{2^{n}}} (-)^{tr_{1}^{n}(\lambda x)+p(x)+q(x)}$$

for $\lambda = \delta + v_i$.

The distribution of the trace transform of p(x) + q(x) is already given in Theorem 9. Therefore, the distribution of correlation function for a fixed δ is given as

$$\begin{cases} -1+2^{n-\frac{e-1}{2}}, & 2^{e-2}+2^{\frac{e-3}{2}} \text{times} \\ -1, & 2^n-2^{e-1} \text{times} \\ -1-2^{n-\frac{e-1}{2}}, & 2^{e-2}-2^{\frac{e-3}{2}} \text{times} \end{cases} \text{ when } e \text{ is odd} \end{cases}$$

$$\begin{cases} -1+2^{n-\frac{e}{2}}, \quad 2^{e-1}+2^{\frac{e-2}{2}} \text{times} \\ -1, \quad 2^n-2^e \text{times} \\ -1-2^{n-\frac{e}{2}}, \quad 2^{e-1}-2^{\frac{e-2}{2}} \text{times} \end{cases} \text{ when } e \text{ is even.} \end{cases}$$

As δ varies over $F_{2^n}^*$, the distribution is for e odd

$$\begin{cases} -1 + 2^{n - \frac{e-1}{2}}, & (2^{e-2} + 2^{\frac{e-3}{2}})(2^n - 1) \text{ times} \\ -1, & (2^n - 2^{e-1})(2^n - 1) \text{ times} \\ -1 - 2^{n - \frac{e-1}{2}}, & (2^{e-2} - 2^{\frac{e-3}{2}})(2^n - 1) \text{ times} \end{cases}$$

and for e even

$$\begin{cases} -1+2^{n-\frac{e}{2}}, & (2^{e-1}+2^{\frac{e-2}{2}})(2^n-1) \text{ times} \\ -1, & (2^n-2^e)(2^n-1) \text{ times} \\ -1-2^{n-\frac{e}{2}}, & (2^{e-1}-2^{\frac{e-2}{2}})(2^n-1) \text{ times} \end{cases}$$

Case 5: $\delta \in F_{2^n} \setminus \{0,1\}$ and $0 \le i, j \le 2^n - 1$: In this case, we have

$$u_i(x) + u_j(\delta x) = p(x) + q(x) + p(\delta x) + q(\delta x) + tr_1^n([v_i + \delta v_j]x).$$

Actually, the correlation function is equivalent to the trace transform of a function r(x) which is given as

$$r(x) = p(x) + q(x) + p(\delta x) + q(\delta x).$$

In order to compute the distribution of the correlation values, the rank of the symplectic form associated with r(x) must be found and it is enough to count the number of x in F_{2^n} satisfying

$$B_r(x,z) = 0$$
, for all $z \in F_{2^n}$

where

$$B_r(x,z) = r(x) + r(z) + r(x+z).$$

Plugging p(x) and q(x) into $B_r(x, z)$, we have

$$B_{r}(x,z) = tr_{1}^{n}(z[tr_{1}^{n}(x) + tr_{e}^{n}(x)] + \delta z[tr_{1}^{n}(\delta x) + tr_{e}^{n}(\delta x)])$$

= $tr_{1}^{n}(z[\delta tr_{1}^{n}(\delta x) + \delta tr_{e}^{n}(\delta x) + tr_{1}^{n}(x) + tr_{e}^{n}(x)]).$

So the rank can be computed by determining the number of solutions to

$$\delta tr_1^n(\delta x) + \delta tr_e^n(\delta x) + tr_1^n(x) + tr_e^n(x) = 0.$$
(1)

Let $tr_e^n(x) = a$ and $tr_e^n(\delta x) = b$, where $a, b \in F_{2^e}$. Then (1) can be written as

$$\delta t r_1^e(b) + t r_1^e(a) + \delta b + a = 0.$$
(2)

SubCase 1: $\delta \in F_{2^e}$. Then from equation (1), we get

$$\delta^2 a + \delta t r_1^n(\delta x) + t r_1^n(x) + a = 0 \tag{3}$$

as $tr_e^n(\delta x) = \delta tr_e^n(x) = \delta a$ because $\delta \in F_{2^e}$.

Now we have the following four cases depending on the values of $tr_1^n(\delta x)$ and $tr_1^n(x)$

- 1. $tr_1^n(\delta x) = 1$ and $tr_1^n(x) = 1$, which implies $\delta^2 a + \delta + \delta^2 a + \delta + \delta^2 a + \delta + \delta^2 a + \delta^2 a + \delta + \delta^2 a + \delta^2$ 1 + a = 0.
- 2. $tr_1^n(\delta x) = 1$ and $tr_1^n(x) = 0$, which gives $\delta^2 a + \delta + a = 0$.
- 3. $tr_1^n(\delta x) = 0$ and $tr_1^n(x) = 1$, which implies $\delta^2 a + 1 + a =$
- 4. $tr_1^n(\delta x) = 0$ and $tr_1^n(x) = 0$, which gives $\delta^2 a + a = 0$.

The fourth equation is true only if a = 0, otherwise $(\delta^2 + 1)a =$ $0 \Rightarrow \delta = 1$ but $\delta \neq 0$ or 1. Also if $a = tr_e^n(x) = 0$, we get $tr_1^n(x) = tr_1^e(a) = tr_1^e(0) = 0$ and $tr_1^n(\delta x) = tr_1^e(\delta a) =$ $tr_1^e(0) = 0$. So all the $x \in F_{2^n}$ for which $tr_e^n(x) = 0$ are solutions to the equation (3) and that actually gives us 2^{n-e} solutions so far. Before we start discussing the other two equations we need the following simple but interesting observation.

$$\begin{split} tr_1^e(\frac{\delta}{1+\delta^2}) &= tr_1^e(\frac{\delta+1}{\delta^2+1} + \frac{1}{\delta^2+1}) \\ &= tr_1^e(\frac{\delta+1}{\delta^2+1}) + tr_1^e(\frac{1}{\delta^2+1}) \\ &= tr_1^e(\frac{\delta+1}{(\delta+1)^2}) + tr_1^e((\frac{1}{\delta+1})^2) \\ &= tr_1^e(\frac{1}{\delta+1}) + tr_1^e(\frac{1}{\delta+1}) \\ &= 0. \end{split}$$

American Journal of Applied Mathematics and Computing

First, we consider e is odd. Then $tr_1^e(1) = 1$. (1) gives $a = \frac{1}{1+\delta}$ which implies

$$tr_1^n(\delta x) = tr_1^e(a\delta)$$

$$= tr_1^e(\frac{\delta}{1+\delta})$$

$$= tr_1^e(1+\frac{1}{\delta+1})$$

$$= tr_1^e(1) + tr_1^e(\frac{1}{\delta+1})$$

$$= 1 + tr_1^e(\frac{1}{\delta+1})$$
and $tr_1^n(x) = tr_1^e(a) = tr_1^e(\frac{1}{\delta+1})$.

(2) gives $a = \frac{\delta}{1+\delta^2}$ which implies

$$tr_1^n(\delta x) = tr_1^e(\frac{\delta^2}{1+\delta^2})$$
$$= tr_1^e(\frac{\delta}{1+\delta})$$
$$= 1 + tr_1^e(\frac{1}{\delta+1})$$

and $tr_1^n(x) = tr_1^e(-\delta)$

and $tr_1^n(x) = tr_1^e(\frac{\delta}{1+\delta^2}) = 0.$ (3) gives $a = \frac{1}{1+\delta^2}$ which implies

$$tr_1^n(\delta x) = tr_1^e(\frac{\delta}{1+\delta^2}) = 0, tr_1^n(x) = tr_1^e(\frac{1}{1+\delta}).$$

Now if $tr_1^e(\frac{1}{1+\delta}) = 0$, then (2) works. If $tr_1^e(\frac{1}{1+\delta}) = 1$, then (3) works. So in any case we have all together $2 \cdot 2^{n-e} = 2^{n-e+1}$ solutions.

Now we consider the case when e is even. Then $tr_1^e(1) = 0$ and $tr_1^e(\frac{\delta}{1+\delta}) = tr_1^e(\frac{1}{1+\delta})$. (1) gives $a = \frac{1}{1+\delta}$ which implies

$$tr_1^n(\delta x) = tr_1^e(\frac{\delta}{1+\delta})$$
$$= tr_1^e(\frac{1}{\delta+1})$$
$$= tr_1^n(x).$$

(2) gives $a = \frac{\delta}{1+\delta^2}$ which implies

$$tr_1^n(\delta x) = tr_1^e(\frac{\delta^2}{1+\delta^2})$$
$$= tr_1^e(\frac{\delta}{1+\delta})$$
$$= tr_1^e(\frac{1}{\delta+1})$$

and $tr_1^n(x) = tr_1^e(\frac{\delta}{1+\delta^2}) = 0.$ (3) gives $a = \frac{1}{1+\delta^2}$ which implies just like before

$$tr_1^n(\delta x) = 0$$
 and $tr_1^n(x) = tr_1^e(\frac{1}{1+\delta})$

Now if $tr_1^e(\frac{1}{1+\delta}) = 0$, then (1),(2) and (3) do not work, only (4) works and that gives us 2^{n-e} solutions. If $tr_1^e(\frac{1}{1+\delta}) = 1$, then each of (1),(2),(3) and (4) works and in that case we have $4 \cdot 2^{n-e} = 2^{n-e+2}$ many solutions. So actually, in half of the cases we have 2^{n-e} many solutions and the other half gives us 2^{n-e+2} many solutions.

As δ varies over $F_{2^e} \setminus \{0,1\}$ and $0 \leq i, j \leq 2^n - 1$, the distribution of correlation function is

$$\begin{cases} -1 + 2^{n - \frac{e-1}{2}}, & (2^{e-2} + 2^{\frac{e-3}{2}})2^n(2^e - 2) \text{ times} \\ -1, & (2^n - 2^{e-1})2^n(2^e - 2) \text{ times} \\ -1 - 2^{n - \frac{e-1}{2}}, & (2^{e-2} - 2^{\frac{e-3}{2}})2^n(2^e - 2) \text{ times} \end{cases}$$

and when e is even

$$\begin{cases} -1+2^{n-\frac{e}{2}}, & (2^{e-1}+2^{\frac{e-2}{2}})2^n(2^{e-1}-1) \text{ times} \\ -1+2^{n-\frac{e-2}{2}}, & (2^{e-3}+2^{\frac{e-4}{2}})2^n(2^{e-1}-1) \text{ times} \\ -1, & (2^n-2^e)2^n(2^{e-1}-1) \\ , & +(2^n-2^{e-2})2^n(2^{e-1}-1) \text{ times} \\ -1-2^{n-\frac{e}{2}}, & (2^{e-1}-2^{\frac{e-2}{2}})2^n(2^{e-1}-1) \text{ times} \\ -1-2^{n-\frac{e-2}{2}}, & (2^{e-3}-2^{\frac{e-4}{2}})2^n(2^{e-1}-1) \text{ times} \end{cases}$$

SubCase 2: $\delta \notin F_{2^e}$. This case is little complicated. Say n =se and pick $\delta \in F_{2^n}$. Consider the map $\phi : F_{2^n} \longrightarrow F_{2^e} \times F_{2^e}$ by $\phi(x) = (tr_e^n(x), tr_e^n(\delta x)).$

We claim: If $\delta \notin F_{2^e}$, then ϕ is onto.

proof: Set $q = 2^e$. Write $\delta = \epsilon^q$. Set $\delta' = \epsilon^q + \epsilon$. $\delta \notin F_q \Rightarrow \delta' \neq 0$, since $\delta' = 0 \Rightarrow \epsilon^q = \epsilon \Rightarrow \epsilon \in F_q \Rightarrow \delta \in F_q$. Pick any $z \in F_q$. tr_e^n is onto , so $\exists \gamma \in F_{q^s}$ with $tr_e^n(\gamma) = z$. Set $\beta = (\delta')^{-1}\gamma$ (possible as $\delta' \neq 0$). Let $x = \beta^q + \beta$. Then $tr_e^n(\gamma) = 0$ and $tr_e^n(x) = 0$ and

$$tr_e^n(\delta x) = tr_e^n(\epsilon^q \beta^q + \epsilon^q \beta)$$

= $tr_e^n(\epsilon^q \beta^q + \epsilon\beta + \delta'\beta)$
= $tr_e^n(\delta'\beta)$
= $tr_e^n(\gamma) = z.$

So $(0, z) \in \text{Im}(\phi)$ and since z is arbitrary $0 \times F_q \subset \text{Im}(\phi)$. Similarly, $F_q \times 0 \subset \text{Im}(\phi)$. As ϕ is additive, ϕ is onto. Hence the number of solutions to $(tr_e^n(x), tr_e^n(\delta x)) = (\epsilon_1, \epsilon_2),$ where $\epsilon_i \in F_{2^e}$ is 2^{n-2e} . Now when $\delta \notin F_{2^e}$ from equation(2)

we get $b = tr_1^e(b)$ and $a = tr_1^e(a)$. Suppose, e is odd. Then (b, a) = (1, 0), (0, 1), (1, 1) and (0, 0)give us solutions to equation (2). So we have all together $4 \cdot 2^{n-2e} = 2^{n-2e+2}$ solutions. If e is even, none of (b, a) =(1,0), (0,1), (1,1) is a solution to equation(2). Consider b =1, a = 0. Then $tr_1^e(b) = 0 \neq b$. Similarly, we can show that the other two do not work either. So only (b, a) = (0, 0) gives us solution to equation (2) and we have 2^{n-2e} solutions. As δ

varies over
$$F_{2^n} \setminus F_{2^e}$$
, the distribution of correlation function is

v

Combining the results of the above five cases, the distribution of the correlation values for the sequence family U can be obtained.

American Journal of Applied Mathematics and Computing

- Boztas, S., Kumar, P.V., Binary sequences with Goldlike correlation but larger linear span, IEEE Trans. Inform. Theory, 40 (1994),532-537.
- [2] Gold, R., Maximal recursive sequences with 3-valued recursive cross-correlation functions, IEEE Trans. Inform. Theory, 14 (1968), 154-156.
- [3] Helleseth, T. and Kumar, P.V., "'Sequences with low correlation,"in Handbook of Coding Theory, V.S. Pless and W.C. Huffman, Eds. Amsterdam, The Netherlands: Elsevier (1998).
- [4] Kim, S.H., and No, J.S., New families of Binary Sequences with low correlation, IEEE Trans. Inform. Theory,

49,No.11 (2003), 3059-3065.

- [5] Lidl, R. and Niederreiter ,W., Finite Fields, Encyclopedia of Mathematics and its Application, Vol 20, Cambridge University Press, Cambridge, 1997.
- [6] Tang, X., Helleseth,T., Hu,L., Jiang,W., A new family of Gold-like sequences, S.W.Golomb et al.(Eds.):SSC 2007.LNCS 4893,(2007), 62-69.
- [7] Udaya, P., "Polyphase and frequency hopping sequences obtained from finite rings", Ph.D. dissertation, Dept. Elec. Eng., Indian Inst. Technol., Kanpur, 1992.