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We are going to introduce Grobner basis, a particular kind of generating set of an ideal
in a polynomial ring k[x1, . . . , xn] over field k, which is one of the main practical tools
for solving system of polynomial equations. The upcoming discussion will focus on an
application of Grobner basis, Integer Programming, in order to demonstrate how the
techniques of Grobner basis work.
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1 Introduction

In this paper we are going to discuss about theory
of Grobner basis and its application to Integer Pro-
gramming. Grobner basis is sort of generalization
of g.c.d of polynomials (Euclidean Algorithm) in
one variable.

Integer programming belongs to the category of
optimization problems, where we have to maxi-
mize or minimize an objective subject to some con-
straints. We will see how Grobner basis can be im-
plemented for solving these kind of problems. In-
teger programming (IPP) is different from Linear
programming (LPP) for the fact that IPP concerns
about finding integer solutions, and finding integer-
only solutions are much more difficult thing to deal
with. We are going to use algorithms motivated by
Grobner basis to solve IPP. Though algorithms are
complicated compared to other available methods
(like branch and bound method), they are worth
investigating so that we can find a more efficient so-
lution. For all algebraic computations, Macaulay2
has been implemented.

2 Grobner Basis

2.1 Lexicographic Order:

Let a = (a1, ..., an) and b = (b1, ..., bn) be in Zn
≥0 .

We define a >lex b if the leftmost nonzero entry of
the vector difference a− b ∈ Zn is positive. We will
write xa >lex x

b, ifa >lex b.

Let f = Σamx
m be a nonzero polynomial in

k[x1, ..., xn] and let > be a monomial order.

• The multidegree of f is,
multideg(f)=max(m ∈ Zn

≥0|am 6= 0)

• The Leading coefficient of f ,
LC(f)=amultideg(f) ∈ k

• The Leading monomial of f is,
LM(f)=xmultideg(f)

• The Leading term of f is, LT(f) = LC(f) .
LM(f)

Let f = 4x3yz+ 4z2− 13x4 + 15xz3 and > being
Lex order. Then

Multideg(f) = (4, 0, 0), LC(f) = −13, LM(f) =
x4, LT (f) = −13x4

2.2 Hilbert Basis Theorem and
Grobner Basis

Theorem 2.1. (Hilbert Basis)[4] Every ideal
I ⊆ k[x1, ..., xn](k being a field) has a finite gen-
erating set. Mathematically, I =< g1, ..., gt > for
some g1, ..., gt ∈ I.

We call this generating sets of ideal as basis. So
every ideal of k[x1, ..., xn] has a basis. Grobner basis
G = {g1, ..., gt} is a basis of ideal I which satisfies
the following property:

< LT (g1), ..., LT (gt)) >=< LT (I) > .

2.3 Properties of Grobner Basis

We define S-polynomial of f and g as follows :

S(f, g) =
xa

LT (f)
.f − xa

LT (g)
.g

where xa = lcm(LM(f), LM(g)).

Buchberger’s Criterion: [4] Let I be a polynomial
ideal. Then a basis G = {g1, ..., gt} of I is a Grobner
basis of I if and only if for all pairs i 6= j, the
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remainder on division of S(gi, gj) by G (listed in
some order) is zero.

This criteria gives rise to an algorithm by which
a Grobner basis for I can be constructed from any
basis of that ideal. This algorithm is known as
Buchberger’s Algorithm. Hence we can say, in
k[x1, ..., xn], every ideal has a Grobner Basis.

2.4 Application of Grobner Basis:
Solving Polynomial Equations[2]

Grobner basis is widely used to solve system of non-
linear polynomial equations. Let us understand this
by an example:
Consider the equations:

x3 + y3 + z3 = 1

x+ z = y

x = z

These equations can be solved by computing Grob-
ner basis. Consider the ideal I = (x3 + y3 + z3 −
1, x + z − y, x − z) ⊆ C[x, y, z]. Now by hand it is
difficult to perform Buchberger’s algorithm to find
Grobner basis. For computation we will use a soft-
ware called Macaulay2. Here are the codes to find
Grobner basis of above ideal:

i1 : CC[x,y,z,MonomialOrder=>Lex]

o1 : PolynomialRing

i2 : I=ideal(x^3+y^3+z^3-1,x+z-y,x-z)

o2 : ideal (x3+y3+z3-1,x-y+z,x-z)

i3 : gens gb I

o3 : ( z^3-.1 y-2z x-z)

Hence Grobner basis is {z3 − 0.1, y − 2z, x − z}.
Since the first polynomial depends on z alone, we
can find the roots. Then by back substitution we
can find values of other variables.

3 Solving Integer Program-
ming by Grobner Basis

The integer programming problem (IPP) can be
defined as follows: Let aij ∈ Z, bi ∈ Z and cj ∈
R, i = 1, ..., n, j = 1, ...,m; we wish to find a solu-
tion (l1, l2, .., lm) in Nm of the system

a11l1 + a12l2 + .....+ a1mlm = b1

a21l1 + a22l2 + .....+ a2mlm = b2

...

an1l1 + an2l2 + .....+ anmlm = bn,

which minimizes the “cost function”
c(l1, l2 . . . , lm) =

∑m
j=1 cj lj

Grobner basis deals with polynomials, hence we
first transfer these system of equations into a prob-
lem of polynomials. First, we assign a variable to

each linear equation. We will let these variables be
x1, x2, . . . , xn for the n equations. Then, we can
represent the above equation as the following:

xai1l1+....+aimlm
i = xbii

But we are going to find a solution to the entire sys-
tem, and so we must combine each of these equa-
tions to construct a single equation which represents
the system. So we multiply the above n many equa-
tions to form a single equation. Thus we have

xa11l1+a12l2+...+a1mlm
1 . . . xan1l1+...+anmlm

n = xb11 . . . xbnn

This can be rewritten as:

(xa11
1 xa21

2 . . . xan1
n )l1 . . . (xa1m

1 xa2m
2 . . . xanm

n )lm = xb11 . . . xbnn

Now we define a polynomial map φ :
k[y1, . . . , yn] −→ k[x1, . . . , xn] such that φ(yj) =
fj ,where fj = x

a1j

1 x
a2j

2 . . . x
anj
n , j = 1, 2, . . . ,m.

This can be showed that φ is a ring homo-
morphism.Then using this map, above equation
transforms into

(φ(y1))l1 . . . (φ(ym))lm = xb11 x
b2
2 . . . xbnn

Now using homomorphism of φ we can say

φ(yl11 . . . y
lm
m ) = xb11 x

b2
2 . . . xbnn

Therefore the monomial xb11 x
b2
2 ...x

bn
n is in the image

under φ of a monomial in k[y1, . . . , ym], provided
(l1, . . . , lm) is a solution of the given Integer pro-
gramming(IPP). Going backwards we can see that
the converse is also true. Hence we have the follow-
ing:

Theorem 3.1. [1] Assume all aij’s and bi’s
are non-negative. Then there exists a solution
(l1, l2, . . . , lm) ∈ Zm

≥0 of given IPP if and only if

the monomial xb11 x
b2
2 . . . xbnn is in the image under

φ of a monomial in k[y1, . . . , ym].Moreover, if

φ(yl11 . . . y
lm
m ) = xb11 x

b2
2 . . . xbnn

then (l1, l2, . . . , lm) ∈ Zm
≥0 is a solution to IPP.

So all we have to do is to find a preimage of the
monomial xb11 x

b2
2 . . . xbnn under φ. How to search

for it? here comes the role of Grobner basis. The
following theorem will tell us how reduced grobner
basis will help us to find the preimage:

Theorem 3.2. [3] Let K =< y1 − f1, . . . , ym −
fm > ∈ k[y1, . . . , ym, x1, . . . , xn] be an ideal where
fj = x

a1j

1 x
a2j

2 . . . x
anj
n , and let G be a Grobner basis

for K with respect to an elimination order with the
x variables larger than the y variables. Then f ∈
k[x1, . . . , xn] is in the image of φ if and only if there
exists h ∈ k[y1, . . . , ym] such that h is the remainder
when dividing f by Grobner basis G. In this case,
f = φ(h) = h(f1, . . . , fm).
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The above theorem gives us the required preim-
age, which leads to the solution of the given IPP.
So combining the two above mentioned theorems we
have our following algorithm[1] of finding solution
of IPP described above:

a11l1 + a12l2 + . . .+ a1mlm = b1

...

an1l1 + an2l2 + . . .+ anmlm = bn

1. Compute a Grobner basis G for K =< yj −
x
a1j

1 x
a2j

2 . . . x
anj
n |1 ≤ j ≤ m > with respect to

an elimination order with the x variables larger
than the y variables;

2. Find the remainder h of the division of the
monomial xb11 . . . xbnn by Grobner basis G.

3. If h /∈ k[y1, ..., ym], then the IPP does not
have non-negative integer solutions. If h =
yl11 ...y

lm
m ,then (l1, l2, ..., lm) is a solution of

given IPP.

Let us solve a IPP using this method.
Problem :

Maximize 3x+ 4y + 2z

Subject to

3x+ 2y + z ≤ 45

x+ 2y + 3z ≤ 21

2x+ y + z ≤ 18

x, y, z ≥ 0, x, y, z ∈ N

This can be rephrased as:

min − 3x− 4y − 2z + 0.w1 + 0.w2 + 0.w3

Subject to

3x+ 2y + z + w1 = 45

x+ 2y + 3z + w2 = 21

2x+ y + z + w3 = 18

x, y, z, w1, w2, w3 ≥ 0, w1, w2, w3 ∈ N

First we convert the IPP into a polynomial
equation by above mentioned procedure to get

(x3
1x2x

2
3)

x(x2
1x

2
2x3)

y(x1x
3
2x3)

zxw1
1 xw2

2 xw3
3 = x45

1 x21
2 x18

3

Hence our required ideal in
k[x1, x2, x3, y1, y2, ..., y6] is K = (y1 − x31x2x23, y2 −
x21x

2
2x3, y3− x1x32x3, y4 − x1, y5 − x2, y6 − x3).

Now we will use Macaulay2 to compute reduced
grobner basis G of K. Then we will divide the
monomial x451 x

21
2 x

18
3 by G to get our solution of

IPP. Macaulay2 codes are written below:

i6 : R=QQ[x1,x2,x3,y1,y2,y3,y4,y5,y6]

o6 = R

o6 : PolynomialRing

i7 : k=ideal(y1-x1^3*x2*x3^3,y2

-x1^2*x2^2*x3,y3-x1*x2^3*x3,

y4-x1,y5-x2,y6-x3)

o7 = ideal (- x1^3 x2*x3^3 + y1,

- x1^2 x2^2 x3 + y2,

- x1*x2^3 x3 + y3,

- x1 + y4,- x2+ y5, - x3 + y6)

o7 : Ideal of R

i8 : x1^45*x2^21*x3^18% gb k

3 9 18

o8 = y1 y2 y4

o8 : R

Hence (3, 9, 0) is a solution of given IPP. But this
is not our aim. Our goal is to find the optimal
solution (let’s focus only minimization). So we have
to minimize the cost function c(l1, ..., lm) and to
do so,we will define a term order on y variables as
follows:

Definition 3.1. term order <c on the y variables is
said to be compatible with the cost function c and
the map φ if

φ(yl11 . . . y
lm
2 ) = φ(y

l
′
1
1 . . . y

l
′
m
m )

and
c(l1, . . . , lm) < c(l

′

1 . . . l
′

m)

implies

yl11 . . . y
lm
2 <c y

l
′
1
1 . . . y

l
′
m
m

We will use this term order to the ring under
consideration. The following theorem gives us the
optimal solution:

Theorem 3.3. [3] Let G be a Grobner basis for
K with respect to an elimination order with the x
variables larger than the y variables, and an order
<c on the y variables which is compatible with the

cost function c and the map φ. If xb11 . . . xbn2
G

=
yl11 . . . y

lm
m (means, yl11 . . . y

lm
m is the remainder when

dividing xb11 . . . xbn2 by G), then (l1, . . . lm) is the op-
timal (minimal) solution of given Integer program-
ming problem.

Now we will use this theorem to our previous al-
gorithm to obtain the minimal solution. The only
difference is that we have to define the term order
initially. The Macaulay2 codes are given below:

i1 : R=QQ[y1,y2,y3,y4,y5,y6,

Weights=>{-3,-4,-2,0,0,0},

MonomialOrder=>Lex,Global=>false]

o1 = R

o1 : PolynomialRing

i2 : R2=R[x1,x2,x3]
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o2 = R2

o2 : PolynomialRing

i3 : K=ideal(y1-x1^3*x2*x3^2,y2-x1^2*x2^2*x3,

y3-x1*x2^3*x3,y4-x1,y5-x2,y6-x3)

o3 = ideal (- x1^3 x2*x3^2 + y1, - x1^2 x2^2 x3 + y2,

- x1*x2^3 x3 + y3, - x1 + y4, - x2+ y5, - x3 + y6)

o3 : Ideal of R2

i4 : x1^45*x2^21*x3^18 % gb K

5 8 14

o4 = y1 y2 y4

o4 : R2

Hence (5, 8, 0) is the optimal solution of given
IPP.

Now let’s try to solve another Integer programming
problem where the constraints have negative integer
coefficients as well:

minimize p = 3x+ 4y + 5z + 8w

Subject to

3x− 2y + z + 2w = 45

x+ 2y − 3z − 5w = 21

2x− y + z = 18

x, y, z, w ≥ 0

Applying previous method to convert it to a poly-
nomial equation:

(t31t2t
2
3)x(t−21 t22t

−1
3 )y(t1t

−3
2 t3)z(t21t

−5
2 )w = t451 t

21
2 t

18
3

As negative powers of t′is are arising, we can’t
work with usual polynomial ring k[t1, t2, t3], some-
how we have to allow the negative powers of t′is in
the ring. There is a ring called Laurent polynomial
ring which will serve our purpose.

Definition 3.2. (Laurent polynomial ring) Let
m = (a1, . . . , an) ∈ Zn be an integer vector.
The corresponding Laurent monomial in variables
t1, . . . , tn is

tm = ta1
1 . . . tan

n

Finite linear combinations

f =
∑

m∈Zn

cmt
m

of Laurent monomials are called Laurent polynomi-
als. We represent the ring of Laurent polynomials
with coefficients from field k by k[t±11 . . . t±1n ].

One important observation is the following:

k[t±11 . . . t±1n ] = k[t1, . . . tn, w]/(t1 . . . tnw − 1)

Intuitively this isomorphism works by introducing
a new variable w satisfying the relation, wt1 . . . tn−
1 = 0, so that w can be written as product of the
inverses of the t′is : w = t−11 . . . t−1n . So in this ring,
negative exponents of variables are allowed, hence

we can construct the ideal K = (y1−f1, . . . ym−fm)
as before, now in k[t±11 . . . t±1n , y1, . . . , ym].

Then by proceeding by previous algorithm we get
our optimal solution of given problem. So, let’s try
again to solve the above in Macaulay2:

i3 : R=QQ[y1,y2,y3,y4,Weights=>{3,4,5,8},

MonomialOrder=>Lex,Global=>false]

o3 = R

o3 : PolynomialRing

i4 : R2=R[t1,t2,t3,w]/(t1*t2*t3*w-1)

o4 = R2

o4 : QuotientRing

i5 : K=ideal(y1-t1^3*t2*t3^2,y2-t1^-2*t2^2*t3^-1,

y3-t1*t2^-3*t3,y4-t1^2*t2^-5)

3 2 4 2

o5 = ideal (- t1 t2*t3 + y1, - t2 t3*w + y2,

4 4 3 7 5 5

- t1 t3 w + y3, - t1 t3 w + y4)

o5 : Ideal of R2

i6 : t1^45*t2^21*t3^18 % gb K

36 57 3 24

o6 = y1 y2 y3 y4

o6 : R2

Hence (36, 57, 3, 24) is the optimal solution and we
have tackled all the cases including negative integer
coefficients.

4 Conclusion and Future work

We have seen a brief discussion about theory of
Grobner basis and its numerous possibilities to-
wards solving problems those are not much related
with Commutative Algebra. My one friend is work-
ing on application of Grobner basis to Ordinary and
partial differential equations.
We have solved so far small problems using
Macaulay2. But for a large scale of variables, it is
computationally difficult to find the reduced Grob-
ner basis of an Ideal. So maybe if we try to con-
vert the generators of a given ideal into an integer
programming problem, and then by solving it nu-
merically (by any method like branch and bound)
and translating back, we may end up with the re-
duced Grobner basis. That’s I am going to try in
future and maybe we can develop an one-one cor-
respondence between Theory of Grobner basis
and Integer Programming Problem.
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